top of page

Fitness Grubu

Herkese Açık·15 üye


The unqualified term "coke" usually refers to the product derived from low-ash and low-sulphur bituminous coal by a process called coking. A similar product called petroleum coke, or pet coke, is obtained from crude oil in oil refineries. Coke may also be formed naturally by geologic processes.[1]


Historical sources dating to the 4th century describe the production of coke in ancient China.[2] The Chinese first used coke for heating and cooking no later than the 9th century.[citation needed] By the first decades of the 11th century, Chinese ironworkers in the Yellow River valley began to fuel their furnaces with coke, solving their fuel problem in that tree-sparse region.[3]

China is the largest producer and exporter of coke today.[4] China produces 60% of the world's coke. Concerns about air pollution have motivated technological changes in the coke industry by elimination of outdated coking technologies that are not energy-efficient.[5]

In 1589, a patent was granted to Thomas Proctor and William Peterson for making iron and steel and melting lead with "earth-coal, sea-coal, turf, and peat". The patent contains a distinct allusion to the preparation of coal by "cooking". In 1590, a patent was granted to the Dean of York to "purify pit-coal and free it from its offensive smell".[6] In 1620, a patent was granted to a company composed of William St. John and other knights, mentioning the use of coke in smelting ores and manufacturing metals. In 1627, a patent was granted to Sir John Hacket and Octavius de Strada for a method of rendering sea-coal and pit-coal as useful as charcoal for burning in houses, without offence by smell or smoke.[7]

In 1709, Abraham Darby I established a coke-fired blast furnace to produce cast iron. Coke's superior crushing strength allowed blast furnaces to become taller and larger. The ensuing availability of inexpensive iron was one of the factors leading to the Industrial Revolution. Before this time, iron-making used large quantities of charcoal, produced by burning wood. As the coppicing of forests became unable to meet the demand, the substitution of coke for charcoal became common in Great Britain, and coke was manufactured by burning coal in heaps on the ground so that only the outer layer burned, leaving the interior of the pile in a carbonized state. In the late 18th century, brick beehive ovens were developed, which allowed more control over the burning process.[9]

In 1768, John Wilkinson built a more practical oven for converting coal into coke.[10] Wilkinson improved the process by building the coal heaps around a low central chimney built of loose bricks and with openings for the combustion gases to enter, resulting in a higher yield of better coke. With greater skill in the firing, covering and quenching of the heaps, yields were increased from about 33% to 65% by the middle of the 19th century. The Scottish iron industry expanded rapidly in the second quarter of the 19th century, through the adoption of the hot-blast process in its coalfields.[11]

In 1802, a battery of beehive ovens was set up near Sheffield, to coke the Silkstone coal seam for use in crucible steel melting. By 1870, there were 14,000 beehive ovens in operation on the West Durham coalfields, producing 4,000,000 long tons of coke per year. As a measure of the expansion of coke making, the requirements of the iron industry in Britain were about 1,000,000 tons per year in the early 1850s, rising to about 7,000,000 tons by 1880. Of these, about 5,000,000 tons were produced in Durham county, 1,000,000 tons in the South Wales coalfield, and 1,000,000 tons in Yorkshire and Derbyshire.[11]

In the first years of steam locomotives, coke was the normal fuel. This resulted from an early piece of environmental legislation; any proposed locomotive had to "consume its own smoke".[12] This was not technically possible to achieve until the firebox arch came into use, but burning coke, with its low smoke emissions, was considered to meet the requirement. This rule was quietly dropped, and cheaper coal became the normal fuel, as railways gained acceptance among the public. The smoke plume produced by a travelling locomotive seems now to be a mark of a steam railway, and so preserved for posterity.

So-called "gas works" produced coke by heating coal in enclosed chambers. The flammable gas that was given off was stored in gas holders, to be used domestically and industrially for cooking, heating and lighting. The gas was commonly known as "town gas" since underground networks of pipes ran through most towns. It was replaced by "natural gas" (initially from the North Sea oil and gas fields) in the decade after 1967.[citation needed] Other byproducts of coke production included tar and ammonia, while the coke was used instead of coal in cooking ranges and to provide heat in domestic premises before the advent of central heating.

In the US, the first use of coke in an iron furnace occurred around 1817 at Isaac Meason's Plumsock puddling furnace and rolling mill in Fayette County, Pennsylvania.[13] In the late 19th century, the coalfields of western Pennsylvania provided a rich source of raw material for coking. In 1885, the Rochester and Pittsburgh Coal and Iron Company[14] constructed the world's longest string of coke ovens in Walston, Pennsylvania, with 475 ovens over a length of 2 km (1.25 miles). Their output reached 22,000 tons per month. The Minersville Coke Ovens in Huntingdon County, Pennsylvania, were listed on the National Register of Historic Places in 1991.[15]

Between 1870 and 1905, the number of beehive ovens in the US increased from approximately 200 to nearly 31,000, which produced nearly 18,000,000 tons of coke in the Pittsburgh area alone.[16] One observer boasted that if loaded into a train, "the year's production would make up a train so long that the engine in front of it would go to San Francisco and come back to Connellsville before the caboose had gotten started out of the Connellsville yards!" The number of beehive ovens in Pittsburgh peaked in 1910 at almost 48,000.[17]

Although it made a top-quality fuel, coking poisoned the surrounding landscape. After 1900, the serious environmental damage of beehive coking attracted national notice, although the damage had plagued the district for decades. "The smoke and gas from some ovens destroy all vegetation around the small mining communities", noted W. J. Lauck of the U.S. Immigration Commission in 1911.[18] Passing through the region on train, University of Wisconsin president Charles Van Hise saw "long rows of beehive ovens from which flame is bursting and dense clouds of smoke issuing, making the sky dark. By night the scene is rendered indescribably vivid by these numerous burning pits. The beehive ovens make the entire region of coke manufacture one of dulled sky: cheerless and unhealthful."[18]

Bituminous coal must meet a set of criteria for use as coking coal, determined by particular coal assay techniques. These include moisture content, ash content, sulphur content, volatile content, tar, and plasticity. This blending is targeted at producing a coke of appropriate strength (generally measured by coke strength after reaction), while losing an appropriate amount of mass. Other blending considerations include ensuring the coke doesn't swell too much during production and destroy the coke oven through excessive wall pressures.

The "hearth" process of coke-making, using lump coal, was akin to that of charcoal-burning; instead of a heap of prepared wood, covered with twigs, leaves and earth, there was a heap of coals, covered with coke dust. The hearth process continued to be used in many areas during the first half of the 19th century, but two events greatly lessened its importance. These were the invention of the hot blast in iron-smelting and the introduction of the beehive coke oven. The use of a blast of hot air, instead of cold air, in the smelting furnace was first introduced by Neilson in Scotland in 1828.[11]The hearth process of making coke from coal is a very lengthy process.[citation needed]

A fire brick chamber shaped like a dome is used, commonly known as a beehive oven. It is typically 4 meters (13.1 ft) wide and 2.5 meters (8.2 ft) high. The roof has a hole for charging the coal or other kindling from the top. The discharging hole is provided in the circumference of the lower part of the wall. In a coke oven battery, a number of ovens are built in a row with common walls between neighboring ovens. A battery consisted of a great many ovens, sometimes hundreds, in a row.[23]

Coal is introduced from the top to produce an even layer of about 60 to 90 centimeters (24 to 35 in) deep. Air is supplied initially to ignite the coal. Carbonization starts and produces volatile matter, which burns inside the partially closed side door. Carbonization proceeds from top to bottom and is completed in two to three days. Heat is supplied by the burning volatile matter so no by-products are recovered. The exhaust gases are allowed to escape to the atmosphere. The hot coke is quenched with water and discharged, manually through the side door. The walls and roof retain enough heat to initiate carbonization of the next charge.

When coal was burned in a coke oven, the impurities of the coal not already driven off as gases accumulated to form slag, which was effectively a conglomeration of the removed impurities. Since it was not the desired coke product, slag was initially nothing more than an unwanted by-product and was discarded. Later, however, it was found to have many beneficial uses and has since been used as an ingredient in brick-making, mixed cement, granule-covered shingles, and even as a fertilizer.[24]

People can be exposed to coke oven emissions in the workplace by inhalation, skin contact, or eye contact. The Occupational Safety and Health Administration (OSHA) has set the legal limit for coke oven emissions exposure in the workplace as 0.150 mg/m3 benzene-soluble fraction over an eight-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of 0.2 mg/m3 benzene-soluble fraction over an eight-hour workday.[25]


Gruba hoş geldiniz! Diğer üyelerle bağlantı kurabilir, günce...
Grup Sayfası: Groups_SingleGroup
bottom of page